Figure of the Earth - Encyclopedia

GEOGRAPHICAL NAMES Spanish Simplified Chinese French German Russian Hindi Arabic Portuguese

FIGURE OF THE EARTH. The determination of the figure of the earth is a problem of the highest importance in astronomy, inasmuch as the diameter of the earth is the unit to which all celestial distances must be referred.


Reasoning from the uniform level appearance of the horizon, the variations in altitude of the circumpolar stars as one travels towards the north or south, the disappearance of a ship standing out to sea, and perhaps other phenomena, the earliest astronomers regarded the earth as a sphere, and they endeavoured to ascertain its dimensions. Aristotle relates that the mathematicians had found the circumference to be 400,000 stadia (about 46,000 miles). But Eratosthenes (c. 250 B.C.) appears to have been the first who entertained an accurate idea of the principles on which the determination of the figure of the earth really depends, and attempted to reduce them to practice. His results were very inaccurate, but his method is the same as that which is followed at the present daydepending, in fact,on the comparison of a line measured on the earths surface with the corresponding arc of the heavens. He observed that at Syene in Upper Egypt, on the day of the summer solstice, the sun was exactly vertical, whilst at Alexandria at the same season of the year its zenith distance was 7 12, or one-fiftieth of the circumference of a circle. He assumed that these places were on the same meridian; and, reckoning their distance apart as 5000 stadia, he inferred that the circumference of the earth was 250,000 stadia (about 29,000 miles). A similar attempt was made by Posidonius, who adopted a method which differed from that of Eratosthenes only in using a star instead of the sun. He obtained 240,000 stadia (about 27,600 miles) for the circumference. Ptolemy in his Geography assigns the length of the degree as 500 stadia.

The Arabs also investigated the question of the earths magnitude. The caliph Abdallah al Mamun (A.D. 814), having fixed on a spot in the plains of Mesopotamia, despatched one company of astronomers northwards and another southwards, measuring the journey by rods, until each found the altitude of the pole to have changed one degree. But the result of this measurement does not appear to have been very satisfactory. From this time the subject seems to have attracted no attention until about 1500, when Jean Fernel (1497-1558), a Frenchman, measured a distance in the direction of the meridian near Paris by counting the number of revolutions of the wheel of a carriage. His astronomical observations were made with a triangle used as a quadrant, and his resulting length of a degree was very near the truth.

Willebrord Snelli substituted a chain of triangles for actual linear measurement. He measured his base line on the frozen surface of the meadows near Leiden, and measured the angles of his triangles, which lay between Alkmaar and Bergen-op-Zoom, with a quadrant and semicircles. He took the precaution of comparing his standard with that of the French, so that his result was expressed in toises (the length of the toise is about 6.39 English ft.). The work was recomputed and reobserved by P. von Musschenbroek in 1729. In 1637 an Englishman, Richard Norwood, published a determination of the figure of the earth in a volume entitled Tue Seamans Practice, contayning a Fundamentall Probleme in Navigation experimentally verified, namely, touching the Compasse of the Earth and Sea and the quantity of a Degree in our English Measures. He observed on the 11th of June 1633 the suns meridian altitude in London as 62 I, and on the 6th of June 1635, his meridian altitude in York as 59 ~ He measured the distance between these places partly with a chain and partly by pacing. By this means, through compensation of errors, he arrived at 367,176 ft. for the degreea very fair result.

The application of the telescope to angular instruments was the next important step. Jean Picard was the first who in 1669, with the telescope, using such precautions as the nature of the operation requires, measured an arc of meridian. He measured with wooden rods a base line of 5663 toises, and a second or base of verification of 3902 toises; his triangulation extended from Malvoisine, near Paris, to Sourdon, near Amiens. The angles of the triangles were measured with a quadrant furnished with a telescope having cross-wires. The difference of latitude of the terminal stations was determined by observations made with a sector on a star in Cassiopeia, giving 1 22 55 for the amplitude. The terrestrial measurement gave 78,850 toises,whenceheinferred for the length of the degree 57,060 toises.

Hitherto geodetic observations had been confined to the determination of the magnitude of the earth considered as a sphere, but ,a discovery made by Jean Richer (d. 1696) turned the attention of mathematicians to its deviation from a spherical form. This astronomer, having been sent by the Academy of Sciences of Paris to the island of Cayenne, in South America, for the purpose of investigating the amount of astronomical refraction and other astronomical objects, observed that his clock, which had been regulated at Paris to beat seconds, lost about two minutes and a half daily at Cayenne, and that in order to bring it to measure mean solar time it was necessary to shorten the pendulum by more than a line (about 1~rth of an in.). This fact, which was scarcely credited till it had been confirmed by the subsequent observations of Varin and Deshayes on the coasts of Africa and America, was first explained in the third hook of Newtons Principia, who showed that it could only be referred to a diminution of gravity arising either from a protuberance of the equatorial parts of the earth and consequent increase of the distance from the centre, or from the counteracting effect of the centrifugal force. About the same time (1673) appeared Christian Huygens De Horologio Oscillatorio, in which for the first time were found correct notions on the subject of centrifugal force. It does not, however, appear that they were applied to the theoretical investigation of the figure of the earth before the publication of Newtons Principia. In 1690 Huygens published his De Causa Gravitatis, which contains an investigation of the figure of the earth on the supposition that the attraction of every particle is towards the centre.

Between 1684 and 1718 J. and D. Cassini, starting from Picards base, carried a triangulation northwards from Paris to Dunkirk and southwards from Paris to Collioure. They measured a base of 7246 toises near Perpignan, and a somewhat shorter base near Dunkirk; and from the northern portion of the arc, which had an amplitude of 2 12 9, obtained for the length of a degree 56,960 toises; while from the southern portion, of which the amplitude was 6 18 57, they obtained 57,097 toises. The immediate inference from this was that, the degree diminishing with increasing latitude, must be a prolate spheroid. This conclusion was totally opposed to the theoretical investigations of Newton and Huygens, and accordingly the Academy of Sciences of Paris determined to apply a decisive test by the measurement of arcs at a great distance from each otherone in the neighborhood of the equator, the other in a high latitude. Thus arose the celebrated expeditions of the French academicians. In May 1735 Louis Godin, Pierre Bouguer and Charles Marie de la Condamine, under the auspices of Louis XV., proceeded to Peru, where, assisted by two Spanish officers, after ten years of laborious exertion, they measured an arc of 3 7, the northern end near the equator. The second party consisted of Pierre Louis Moreau de Maupertuis, Alexis Claude Clairault, Charles Etienne Louis Camus, Pierre Charles Lemonnier, and Reginaud Outhier, who reached the Gulf of Bothnia in July 1736; they were in some respects more fortunate than the first party, inasmuch as they completed the measurement of an arc near the polar circle of 57 amplitude and returned within sixteen months from the date of their departure.

The measurement of Bouguer and De la Condamine was executed with great care, and on account of the locality, as well as the manner in which all the details were conducted, it has always been regarded as a most valuable determination. The southern limit was at Tarqui, the northern at Cotchesqui. A base of 6272 toises was measured in the vicinity of Quito, near the northern extremity of the arc, and a second base of 5260 toises near the southern extremity. The mountainous nature of the country made the work very laborious, in some cases the difference of heights of two neighboring stations exceeding I mile; and they had much trouble with their instruments, those with which they were to determine the latitudes proving untrustworthy. But they succeeded by simultaneous observations of the same star at the two extremities of the arc in obtaining very fair results. The whole length of the arc amounted to 176,945 toises, while thedifferenceofiatitudeswas3 7 3. Inconsequence of a misunderstanding that arose between De Ia Condamine and Bouguer, their operations were conducted separately, and each wrote a full account of the expedition. Bouguers book was published in 1749; that of De la Condamine in 1751. The toise used in this measure was afterwards regarded as the standard toise, and is always referred to as the Toise of Peru.

The party of Maupertuis, though their work was quickly despatched, had also to contend with great difficulties. Not being able to make use of the small islands in the Gulf of Bothnia for the trigonometrical stations, they were forced to penetrate into the forests of Lapland, commencing operations at Torne~, a city situated on the mainland near the extremity of the gulf. From this, the southern extremity of their arc, they carried a chain of triangles northward to the mountain Kittis, which they selected as the northern terminus. The latitudes were determined by observations with a sector (made by George Graham) of the zenith distance of a and b Draconis. The base line was measured on the frozen surface of the river Torne~ about the middle of the arc; two parties measured it separately, and they differed by about 4 in. The result of the whole was that the difference of latitudes of the terminal stations was 57 29.6, and the length of the arc 55,023 toises. In this expedition, as well as in that to Peru, observations were made with a pendulum to determine the force of gravity; and these observations coincided with the geodetic results in proving that the earth was an oblate and not prolate spheroid.

In 1740 was published in the Paris Mmoires an account, by Cassini de Thury, of a remeasurement by himself and Nicolas Louis de Lacaille of the meridian of Paris. With a view to determine more accurately the variation of the degree along the meridian, they divided the distance from Dunkirk to Collioure into four partial arcs of about two degrees each, by observing the latitude at five stations. The results previously obtained by J. and D. Cassini were not confirmed, but, on the contrary, the length of the degree derived from these partial arcs showed on the whole an increase with an increasing latitude. Cassini and Lacaille also measured an arc of parallel across the mouth of the Rhone. The difference of time of the extremities was determined by the observers at either end noting the instant of a signal given by flashing gunpowder at a point near the middle of the arc.

While at the Cape of Good Hope in 1752, engaged in various astronomical observations, Lacaille measured an arc of meridian of II3 17, which gave him for the length of the degree 57,037

toisesan unexpected result, which has led to the remeasurement of the arc by Sir Thomas Maclear (see GEODESY).

Passing over the measurements made between Rome and Rimini and on the plains of Piedmont by the Jesuits Ruggiero Giuseppe Boscovich and Giovanni Battista Beccaria, and also the arc measured with deal rods in North America by Charles Mason and Jeremiah Dixon, we come to the commencement of the English triangulation. In 1783, in consequence of a representation from Cassini de Thury on the advantages that would accrue from the geodetic connection of Paris and Greenwich, General William Roy was, with the kings approval, appointed by the Royal Society to conduct the operations on the part of England, Count Cassini, Mchain and Delambre being appointed on the French side. A precision previously unknown was attained by the use of Ramsdens theodolite, which was the first to make the spherical excess of triangles measurable. The wooden rods with which the first base was measured were replaced by glass rods, which were afterwards rejected for the steel chain of Ramsden. (For further details see Account of the Trigonometrical Survey of England and Wales.)

Shortly after this, the National Convention of France, having agreed to remodel their system of weights and measures, chose for their unit of length the ten-millionth part of the meridian quadrant. In order to obtain this length precisely, the remeasurement of the French meridian was resolved on, and deputed to J. B. J. Delambre and Pierre Francois Andr Mchain. The details of this operation will be found in the Base du systme mtrique dcimale. The arc was subsequently extended by Jean Baptiste Biot and Dominique Francois Jean Arago to the island of Iviza. Operations for the connection. of England with the continent of Europe were resumed in 1821 to 1823 by Henry Kater and Thomas Frederick Colby on the English side, and F. J. D. Arago and Claude Louis Mathieu on the French.

The publication in 1838 of Friedrich Wilhelm Bessels Gradmessung in Ostpreussen marks an era in the science of geodesy. Here we find the method of least squares applied to the calculation of a network of triangles and the reduction of the observations generally. The systematic manner in which all the observations were taken with the view of securing final results of extreme accuracy is admirable. The triangulation, which was a small one, extended about a degree and a half along the shores of the Baltic in a N.N.E. direction. The angles were observed with theodolites of 12 and 15 in. diameter, and the latitudes determined by means of the transit instrument in the prime verticala method much used in Germany. (The base apparatus is described in the article GEODESY.)

The principal triangulation of Great Britain and Ireland, which was commenced in 1783 under General Roy, for the more immediate purpose of connecting the observatories of Greenwich and Paris, had been gradually extended, under the successive direction of Colonel E. Williams, General W. Mudge, General T. F. Colby, Colonel L. A. Hall, and Colonel Sir Henry James; it was finished in 1851. The number of stations is about 250. At 32 of these the latitudes were determined with Ramsdens and Airys zenith sectors. The theodolites used for this work were, in addition to the two great theodolites of Ramsden which were used by General Roy and Captain Kater, a smaller theodolite of 18 in. diameter by the same mechanician, and another of 24 in. diameter by Messrs Troughton and Simms. Observations for determination of absolute azimuth were made with those instruments at a large number of stations; the stars a, ~, and X Ursae Minoris and 51 Cephei being those observed always at the greatest azimuths. At six of these stations the probable error of the result is under 04, at twelve under o5, at thirty-four under o~7: so that the absolute azimuth of the whole network is determined with extreme accuracy. Of the seven base lines which have been measured, five were by means of steel chains and two with Colbys compensation bars (see GEODESY). The triangulation was computed by least squares. The total number of equations of condition for the triangulation is 920; if therefore the whole had been reduced in one mass, as it should have been, the solution of an equation of 920 unknown quantities would have occurred as a part of the work. To avoid this an approximation was resorted to; the triangulation was divided into twenty-one parts or figures; four of these, not adjacent, were first adjusted by the method explained, and the corrections thus determined in these figures carried into the equations of condition of the adjacent figures. The average number of equations in a figure is 44; the largest equation is one of 77 unknown quantities. The vertical limb of Airys zenith sector is read by four microscopes, and in the complete observation. of a star there are 10 micrometer readings and 12 level readings. The instrument is portable; and a complete determination of latitude, affected with the mean of the declination errors of two stars, is effected by two micrometer readings and four level readings. The observation consists in measuring with the telescope micrometer the difference of zenith distances of two stars which cross the meridian, one to the north and the other to the south of the observer at zenith distances which differ by not much more than 10 or 15, the interval of the times of transit being not less than one nor more than twenty minutes. The advantages are that, with simplicity in the construction of the instrument and facility in the manipulation, refraction is eliminated (or nearly so, as the stars are generally selected within 25 of the zenith), and there is no large divided circle. The telescope, which is counterpoised on one side of the vertical axis, has a small circle for finding, and there is also a small horizontal circle. This instrument is universally used in American geodesy.

The principal work containing the methods and results of these operations was published in 1858 with the title Ordnance Trigonometrical Survey of Great Britain and Ireland. Account of the observations and calculations of the principal triangulation and of the figure, dimensions and mean specific gravity of the earth as derived therefrom. Drawn up by Captain Alexander Ross Clarke, R.E., F.R.A.S., under the direction of Lieut.-Colonel H. James, R.E., F.R.S., M.R.I.A., &c. A supplement appeared in I862:

Custom Search

Encyclopedia Alphabetically

A * B * C * D * E * F * G * H * I * J * K * L * M * N * O * P * Q * R * S * T * U * V * W * X * Y * Z

Advertise Here


- Please bookmark this page (add it to your favorites)
- If you wish to link to this page, you can do so by referring to the URL address below.

This page was last modified 29-SEP-18
Copyright © 2021 ITA all rights reserved.